Multiscale simulations of concrete mechanical tests
نویسندگان
چکیده
In civil engineering, computational modeling is widely used in the design process at the structural level. In contrast to that, an automated support for the selection or design of construction materials is currently not available. Specification of material properties and model parameters has a strong influence on the results. Therefore, an uncoupled twostep approach is employed to provide relatively quick and reliable simulations of concrete (mortar) tests. First, the Mori–Tanaka method is utilized to include the majority of small aggregates and air voids. The strain incremental form of MT approach serves for the prediction of material properties subsequently used in the finite element simulations of mechanical tests. © 2012 Elsevier B.V. All rights reserved.
منابع مشابه
A FEM Multiscale Homogenization Procedure using Nanoindentation for High Performance Concrete
This paper aims to develop a numerical multiscale homogenization method for prediction of elasto-viscoplastic properties of a high performance concrete (HPC). The homogenization procedure is separated into two-levels according to the microstructure of the HPC: the mortar or matrix level and the concrete level. The elasto-viscoplastic behavior of individual microstructural phases of the matrix a...
متن کاملMultiscale Analysis of Transverse Cracking in Cross-Ply Laminated Beams Using the Layerwise Theory
A finite element model based on the layerwise theory is developed for the analysis of transverse cracking in cross-ply laminated beams. The numerical model is developed using the layerwise theory of Reddy, and the von Kármán type nonlinear strain field is adopted to accommodate the moderately large rotations of the beam. The finite element beam model is verified by comparing the present numeric...
متن کاملLaboratory study of mechanical properties of ordinary concrete under high heat consumption in hydraulic structures, along with validation by SEM and XRD tests
In this laboratory research, a mixing plan was made of ordinary concrete containing Portland cement type 2 with a grade of 500 kg / m3. Compressive strength, tensile strength and modulus of elasticity tests of concrete were performed on concrete samples at 90 days of processing age at 21 °C and 600 ° C. In order to further evaluate and validate the results, SEM and XRD tests were performed on c...
متن کاملMechanical Behavior of Self-Compacting Reinforced Concrete Including Synthetics and Steel Fibers
This paper investigated the effects of combining fibers with self-consolidating concrete (SCC). 12 series of test specimens were prepared using three kinds of fibers including steel, polyphenylene sulfide (PPS) and glass fibers with four different volumes fractions and one specimen without fibers as a reference sample. All plans were subjected to fresh concrete tests. For mechanical behavior of...
متن کاملUpscaling Cement Paste Microstructure to Obtain the Fracture, Shear, and Elastic Concrete Mechanical LDPM Parameters
Modeling the complex behavior of concrete for a specific mixture is a challenging task, as it requires bridging the cement scale and the concrete scale. We describe a multiscale analysis procedure for the modeling of concrete structures, in which material properties at the macro scale are evaluated based on lower scales. Concrete may be viewed over a range of scale sizes, from the atomic scale ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 236 شماره
صفحات -
تاریخ انتشار 2012